
Metadata Driven Data Transformation

Petr Aubrecht

and
Zdenek Kouba

{aubrech,kouba}@labe.felk.cvut.cz
Czech Technical University

Technická 2
Prague, 166 27, Czech Republic

Abstract

The bottleneck of a data warehouse implementation is
the ETL (extraction, transformation, and load) pro-
cess, which carries out the initial population of the
data warehouse and its further (usually periodical)
updates. There is a number of software products sup-
porting the OLAP analysis. However, the ETL pro-
cess implementation is not repeatable in a significant
way.

This paper reports on a research of a model-based
data transformation applicable to data warehouse
population and updates. The ETL process is based
on a metadata repository, which contains data models
of the data sources, the target data warehouse model,
and the correspondence among them.

Keywords: ETL, Data Transformation, Metadata,
Data Warehouse, Scripting Language, Data Pump,
Data Mining

1 System overview

State of the art in metadata development is focused
mainly on declarative metadata. The nature of desired
system behavior requires to have both declarative and
procedural metadata.

The metadata repository is a core of the whole sys-
tem. It has a form of a tree, in which all metadata
is stored. The two branches leading from the root
represent declarative and procedural information, as
described in the section 2.

The procedural part of metadata is supported by
proprietary scripting language called Sumatra, devel-
oped specially for this purpose. Sumatra is a Java-like
language capable to deal with the metadata repository
and to access data sources. The data transformation
system uses Sumatra’s interpreter, assembling parts of
a source code (possibly) just before the desired trans-
formation. For details see the section 3.

2 Metadata

All information in the system is stored in the meta-
data repository. Its tree structure allows to separate
declarative information from the procedural one.

The declarative part of metadata describes the data
models of all data sources. Data sources are de-
termined by their name, type, and a list of fields
(columns, attributes). All data sources are listed in
a branch called Datasources.

The procedural part of metadata is intended to store
transformation procedures. They are stored in the
branch Transformations. The information stored in
this branch is used to prepare the transformation task,
i.e. before the transformation starts.

Metadata itself can be stored in the standard data
interchange format XML. If so, the information can
be shared with other data transformation/preparation
tools.

2.1 Data Sources

For the purposes of the presented system, the data
source is represented by a table with a fixed number
of fields (columns, attributes).

All data sources have three attributes in common—
name, type, and a list of fields.
Name represents an identifier, which is used by trans-

formation scripts. This concept is similar to aliases in
database access (ODBC, BDE).
Type determines access objects. For each registered

type there exists an object in the system, which pro-
vides the access to the data source. This object is
responsible for all operations—getting a record, open-
ing, and closing the data source, navigating in the
dataset.

Various data source families have been taken into
account. At the moment, the SQL data sources,
files with the comma-delimited text format, and files
with fixed-sized records are supported. Further data
source types (e.g. XML or simple Prolog facts) can
be added easily. The system provides internal virtual
data source, which has to be inherited (it is an C++
class). The virtual class provides basic behavior and



its simple descendant is able only to obtain a text line
representing a record.
List of fields represent the fields (columns) of

the data source. The fields are typed. There exist
standardized data types. The standard field types are
Integer, Number, String, and DateTime. New types
can be introduced by data source objects. A set of
attributes can be attached to each particular type.

For example DateTime has a Format attribute,
which is a string containing detailed format of the date
and time. System offers a set of functions processing
standard attributes to simplify introducing new types
of data sources with full formatting capabilities.

Attributes of fields are very important for special
cases. National formats of date and time or of writ-
ing real numbers (using comma instead of point) etc.
make troubles in most products or (for example—
ODBC and BDE) database drivers, which may not
be able to process them. Our data sources use all
the offered functions and can be simply customized
by making use of these attributes.

2.2 Transformations

Transformations represent the procedural part of
metadata, as was mentioned above. The basic prin-
cipal is similar to data sources. The corresponding
branch in the metadata tree is called Transformations,
under which all transformations are listed.

Transformations have two obligatory attributes—
the name and the template.

Name acts as an internal identifier.
Template is either a name of a script or a name of

a template. Both are scripts in written in the Suma-
tra language, possibly enriched with special macros.
Before the script is started, the macros are expanded
into regular Sumatra code.

Optional attribute desc contains a description of
the transformation in a natural language for better
readability.

Parameters to templates are stored in a vector at-
tribute denoted Params. All parameters necessary to
customize the template are stored in it.

Templates and their language are described in the
next section in detail.

3 Sumatra

Sumatra is a language intended for procedural tasks
in the described data transformation system. It is
proceeded by the built-in interpreter equipped with a
preprocessor.

The preprocessing part of Sumatra looks for all
known macros and replaces them by their expansion.
This process is done in a fixed order given by the sys-
tem. It allows making use of macros as arguments of

others without the need to parse the text in a more
complicated way. The replacement is done purely tex-
tually, independently on the location of the macro.
Thus, macros are expanded in comments. It allows
for example to concatenate a customizable code into
a legal Sumatra identifier.

The grammar part of Sumatra analyzes the pure
Sumatra code (after preprocessing) and constructs ex-
ecution structures. The execution of these structures
is fast enough. Overwhelming majority of time is
spent in data source access methods. As tests have
shown, time consumed by executing Sumatra code is
under 1% of the total time of a transformation task.

3.1 Language

Sumatra language has been developed as a scripting
language, with emphasis given to a simple usage from
programmers point of view, simple parsing and easy
integration into a data transformation system.

Sumatra meets all these requirements. It has been
motivated by C and Java syntaxe. It has all com-
monly known programming structures as assignment,
all three types of cycles, and the conditional state-
ment. It supports very simple form of procedures for
repeatedly used parts of code.

Sumatra language has a built-in set of objects and
functions. They are divided into two parts.

First group of objects and functions is intended to
access the data sources. These objects can fully con-
trol all methods and properties of internal objects.
They support also the independence of the data access
on the particular data source type. All data sources
are accessed via a standardized interface and all of
them have the same behavior. From Sumatra point of
view all the data sources seem to be equivalent.

Second group of objects and functions support for-
matting, displaying messages etc.

A short simplified example of a Sumatra code fol-
lows:

string report="";

ASTDataObjectPtr source;

source.Open();

int cont = source.FirstRecord();

while(cont)

{

report = report +

source.GetFieldByName("description")

.AsString+"\r\n";

cont = source.NextRecord();

}

source.Close();

Message(report);



3.2 Templates

One of the most important features introduced in this
system is making use of templates. Templates are
skeletons of Sumatra scripts. These scripts are written
for specific purposes.

Templates are intended to be reusable. As soon
as a template is ready, it should be general enough
to cover as wide area as possible customizing only a
specific behavior.

The customization of templates is usually done by
parameters. Parameters are properties of a particu-
lar transformation and they are referenced from tem-
plates.

3.3 Parameters

As templates provide only a basic structure of the
final script, the additional information is stored in
transformation’s parameters. Any occurence of the
##param(name)macro in the template will be replaced
by the value of the parameter. Let us have for exam-
ple a part of a script int i=##param(From); and a
parameter From=”0”. This part of the script will be
expanded into int i=0; This is the way templates
utilize parameters. The same templates used in dif-
ferent transformations with different parameter values
will lead to different behavior of the final code.

So far we presented only the basic way of making use
of templates. A lot of parameters is often needed when
developing a template. However, they have usually the
same value in most occurences. Using default values
allows to change the default behavior only when nec-
essary. The example from the previous paragraph can
be changed to int i=##param(From,0); If transfor-
mation parameters don’t contain the attribute From,
0 will be used in the resulting code. If present, the
given value will override the default one.

Very often bits of Sumatra code are used as pa-
rameters. However, it is inconvenient to store large
texts in metadata. They are usually saved in ex-
ternal files. For these reasons parameters have the
ability to be stored outside metadata repository. It
is done by means of concatenating the name of the
particular parameter with the string “File”. This
means that the particular occurence of the parame-
ter will be replaced by the contents of the file speci-
fied by the parameter value rather than by the value
itself. Very often we can meet the following exam-
ple in real life data transformation templates. Let
there is an optional parameter code, referenced by the
##param(Code,) macro in the template. Providing
the parameter CodeFile=”proc.sum” will cause that
the macro will be replaced by the content of the file
proc.sum rather than by the proc.sum string itself.

Last presented feature simplifies calculating char-
acteristics like minimum, maximum, count, sum, local

minimum, etc. Combining the AnalyzeTable template
and Calculate parameter will automatically generate
calculations into the code. These calculations have a
special branch from the root of metadata tree. It al-
lows to share prepared calculations by various tasks.
Prepared calculations are written in a special man-
ner. After some processing they are put into the final
script.

Calculations are listed in the vector parameter Cal-
culate. It contains a set of vector nodes. Their names
determine calculations—the system looks for a defini-
tion with the same name. A content of these nodes
is a list of (usually) fields, which have to undergo the
calculation. In this way a large set of calculations can
be done in a simple way—only by listing them in a
chosen node.

3.4 Macros

Macros play two roles in this system. All macros start
with ##, followed by a name—only letters. A list of
parameters is in parenthesis.

The aim of the first group of macros is to access
transformation parameters.

The most important macro is ##param(name). It
takes the parameter with the given name and replaces
itself by it. All parameters are processed as string.

Another macro is ##Calculate(ds,part) for pro-
cessing calculations.

The second, larger group of macros is intended to
access the data source information. These macros usu-
ally create a list of fields and carry out some operation
on it.

As a representative of the second group the
##DSCopyMatchingFields macro can be chosen. It
does assignments for all pairs of fields with compati-
ble data types, where the fields may belong to different
data sources.

Macros for accessing data sources also provide a pa-
rameter for history handling. Specifying the history
with a value greater than zero leads to storing given
levels of records in memory. These records can be
retrieved easily. The history can be used e.g. for de-
termining the differences between subsequent records.

3.5 Basic Templates

There is a basic set of templates already developed. It
covers most of common transformation scenarios.

Most of transformations is done by reading a record
from one data source, making some calculations and
saving results into another data source repeatedly un-
til the end of the first data source has been reached.
This is exactly what the TransformTable.sum tem-
plate does. Its most important parameters are From
and To determining chosen data sources and Code
specifying the calculations.



In an older version, there was the CopyTable

template, but it has been removed and it has
been replaced by the TransformTable one with
Code containing the text ##DSCopyMatchingFields(
##param(From), ##param(To)).

Sometimes, it is needed to process several input
records and then to process the output or to gener-
ate more output records from one input record. The
TransformTable1toN.sum template allows it.

For easy analysis of processing and saving there
is a template AnalyseTable.sum. It is similar to
the TransformTable one (with save part in a proce-
dure) extended with macros making the analysis. It
is prepared for simple calculation of characteristics of
a large number of fields.

3.6 Running Script

Sumatra script (transformation) can be run in three
ways.

The usual way is the most complex one. First of all,
metadata is read from the repository, then a transfor-
mation is selected, a template file name is determined
and the file is loaded and preprocessed. A complete
script is generated. (At this step the script can be
saved for the later usage.) At the end the script is
executed by Sumatra interpreter.

When the transformation is prepared without use
of templates or it has been saved after instantiating
the template (as in the previous paragraph), there is
no need for template processing. Because templates
usually depend on metadata, they require to load the
repository before processing.

The simplest processing can be done with raw
scripts. This kind of scripts can run without large
demends on the system. The script itself can handle
the repository freely. It can be successfully used to
handle the metadata itself, for example to change the
information on the data source if monthly acquired
file names change according to the date.

4 Accompanying Tools

In the beginning of the system implementation all the
metadata and scripts have been manually typed into
raw text files. This is the fastest way for experts, but
unacceptable for common users. For non-experts a set
of supporting tool has been developed.

4.1 GUI

A graphical user interface has been designed and im-
plemented to simplify the preparation of transforma-
tions. The program allows to arrange simply the
transformations by selecting data types in a list box,

dragging lines representing data flows between desired
data sources and supplying additional information.

This environment is written in Java. Thus, transfor-
mations can be prepared on any platform. The whole
system has been designed as portable between plat-
forms. However, so far it has been exhaustively tested
under Windows NT/98/2000. Its portability to Linux
platform will be tested later.

4.2 DBreport

DBreport is an importer of data sources. It navi-
gates the user through the process of creating the data
source description, automatically recognizing data
types. It has one part for SQL, simply getting in-
formation relational databases.

The second part is indented for analyzing of text
files. It is able to recognize delimiting char and types
of fields. It also supports attributes—usually name
and type.

4.3 RepEdit

The last tool is a low-level tool allowing to edit meta-
data in a graphical way (in a tree representation). On
the other hand it can be used for demonstration of
metadata structure.

5 Most Important Advantages

The whole system has many important features, which
are difficult to be explained in the retsricted extend of
this paper. For this reason a list of most interesting
advantages for regular users is provided.

5.1 Graphical GUI

Graphical GUI is an intuitive tool guiding the user
through the data transformation design. It is the usual
way provided by most of current data base adminis-
trating tools. In contrary to most of such tools, capa-
bilities of which finish at this level, capabilities of the
presented system have to start here, otherwise the full
power of the system could not be exploited.

5.2 Data Source Aliases

The user doesn’t care about the data source type.
The processing runs in the same way both for SQL
databases and delimited text files. The only difference
can be the speed, as an optimalized reading of text
file will be much faster than accessing JDBC source
through TPC/IP network protocol.

5.3 Templates

Although there exist only three basic templates, it is
not needed to increase their number at the moment.



The reason is that they provide enough power for most
of transformations.

If there a need arises to create a new one, there is
no problem to do it. A new template can be simply
copied into the template directory and then it can
be referenced by transformation metadata and freely
reused.

5.4 Reusability

Also small parts of code can be reused. A good ex-
ample of this need is the preparation of a training
and testing datasets in data mining tasks. After de-
bugging a script processing the training dataset, the
same script (saved in a file out of the metadata repos-
itory) can be used for processing the testing dataset.
Both transformations for both training and evaluate
datasets are the same except used data sources.

5.5 Extensibility

A lot of prepared ways of extensions is provided by the
system core: a virtual data source for implementing
new data sources, a uniform work with macros for cre-
atimg new macros, Sumatra language is also prepared
for including new classes and functions (continuously
extended according to the needs). All these ways in-
crease utilizability of the system into any desired level.

However, it is possible to extend basic ideas even
without accessing the source code and compiling it.
For example there can be systems accessing XML
based metadata files and generating Sumatra scripts
or fragments of scripts. A relevant study has been
already started with promising intermediate conclu-
sions.

6 Conclusion

The system has been successfully tested and used in
several real life applications for both data transforma-
tion and data analysis tasks. It allows a quick and sim-
ple preparation of data transformations thanks to a
wide range of formatting capabilities and to the power
of Sumatra language and its macros.

The well designed structure allows to develop other
tools with additional features. These tools can for
example create parts of Sumatra code, which will be
included into full transformation code afterwards.

Further development will affect also the set of avail-
able data sources and the set of macros including ex-
ternal control in both cases.

Acknowledgement

The work presented in this paper has been supported
partially by the Ministry of Education of the Czech

Republic under Project No. LN00B096 and partially
by the INCO COPERNICUS 977091 Geographical In-
formation On-line Analysis (GOAL) research project.

References

[1] Petr Aubrecht. Sumatra Basics. Technical report
GL–121/00 1, Czech Technical University, Depart-
ment of Cybernetics, Technická 2, 166 27 Prague
6, December 2000.

[2] Z. Kouba, K. Matoušek, P. Mikšovský, and
O. Štěpánková. On Updating the Data Warehouse
from Multiple Data Sources. In DEXA ’98. Vi-
enna, Springer-Verlag, Heidelberg, 1998.


